A Brief History of UNIX
UNIX has been a popular OS for more than two decades because of its multi-user, multi-tasking environment, stability, portability and powerful networking capabilities. What follows here is a simplified history of how UNIX has developed (to get an idea for how complicated things really are, see the web site http://www.levenez.com/unix/).

In the late 1960s, researchers from General Electric, MIT and Bell Labs launched a joint project to develop an ambitious multi-user, multi-tasking OS for mainframe computers known as MULTICS (Multiplexed Information and Computing System). MULTICS failed (for some MULTICS enthusiasts "failed" is perhaps too strong a word to use here), but it did inspire Ken Thompson, who was a researcher at Bell Labs, to have a go at writing a simpler operating system himself. He wrote a simpler version of MULTICS on a PDP7 in assembler and called his attempt UNICS (Uniplexed Information and Computing System). Because memory and CPU power were at a premium in those days, UNICS (eventually shortened to UNIX) used short commands to minimize the space needed to store them and the time needed to decode them - hence the tradition of short UNIX commands we use today, e.g. ls, cp, rm, mv etc.
Ken Thompson then teamed up with Dennis Ritchie, the author of the first C compiler in 1973. They rewrote the UNIX kernel in C - this was a big step forwards in terms of the system's portability - and released the Fifth Edition of UNIX to universities in 1974. The Seventh Edition, released in 1978, marked a split in UNIX development into two main branches: SYSV (System 5) and BSD (Berkeley Software Distribution). BSD arose from the University of California at Berkeley where Ken Thompson spent a sabbatical year. Its development was continued by students at Berkeley and other research institutions. SYSV was developed by AT&T and other commercial companies. UNIX flavours based on SYSV have traditionally been more conservative, but better supported than BSD-based flavours.
Ken Thompson then teamed up with Dennis Ritchie, the author of the first C compiler in 1973. They rewrote the UNIX kernel in C - this was a big step forwards in terms of the system's portability - and released the Fifth Edition of UNIX to universities in 1974. The Seventh Edition, released in 1978, marked a split in UNIX development into two main branches: SYSV (System 5) and BSD (Berkeley Software Distribution). BSD arose from the University of California at Berkeley where Ken Thompson spent a sabbatical year. Its development was continued by students at Berkeley and other research institutions. SYSV was developed by AT&T and other commercial companies. UNIX flavours based on SYSV have traditionally been more conservative, but better supported than BSD-based flavours.
Linux is a free open source UNIX OS for PCs that was originally developed in 1991 by Linus Torvalds, a Finnish undergraduate student. Linux is neither pure SYSV or pure BSD. Instead, incorporates some features from each (e.g. SYSV-style startup files but BSD-style file system layout) and aims to conform with a set of IEEE standards called POSIX (Portable Operating System Interface). To maximise code portability, it typically supports SYSV, BSD and POSIX system calls (e.g. poll, select, memset, memcpy, bzero and bcopy are all supported).
The open source nature of Linux means that the source code for the Linux kernel is freely available so that anyone can add features and correct deficiencies. This approach has been very successful and what started as one person's project has now turned into a collaboration of hundreds of volunteer developers from around the globe. The open source approach has not just successfully been applied to kernel code, but also to application programs for Linux (see e.g. http://www.freshmeat.net).
As Linux has become more popular, several different development streams or distributions have emerged, e.g. Redhat, Slackware, Mandrake, Debian, and Caldera. A distribution comprises a prepackaged kernel, system utilities, GUI interfaces and application programs.
Redhat is the most popular distribution because it has been ported to a large number of hardware platforms (including Intel, Alpha, and SPARC), it is easy to use and install and it comes with a comprehensive set of utilities and applications including the X Windows graphics system, GNOME and KDE GUI environments, and the StarOffice suite (an open source MS-Office clone for Linux).
The open source nature of Linux means that the source code for the Linux kernel is freely available so that anyone can add features and correct deficiencies. This approach has been very successful and what started as one person's project has now turned into a collaboration of hundreds of volunteer developers from around the globe. The open source approach has not just successfully been applied to kernel code, but also to application programs for Linux (see e.g. http://www.freshmeat.net).
As Linux has become more popular, several different development streams or distributions have emerged, e.g. Redhat, Slackware, Mandrake, Debian, and Caldera. A distribution comprises a prepackaged kernel, system utilities, GUI interfaces and application programs.
Redhat is the most popular distribution because it has been ported to a large number of hardware platforms (including Intel, Alpha, and SPARC), it is easy to use and install and it comes with a comprehensive set of utilities and applications including the X Windows graphics system, GNOME and KDE GUI environments, and the StarOffice suite (an open source MS-Office clone for Linux).
No comments:
Post a Comment